

Solar Cooling for the Sunbelt Regions – IEA SHC Task 65

Introduction and cooperation possibilities

Daniel Neyer, NB / Uni Innsbruck & Uli Jakob, JER / Green Chiller 6th Yangzi River Delta International Conference on New Energy Online, 5th December 2020

Future Trends

- On current trend, energy needs for space cooling almost entirely in the form of electricity – will more than triple between 2016 and 2050, driven mainly by the residential sector (2,000 TWh => 6,000 TWh)
- Most of the projected growth in energy use for cooling is set to come from India, China and other emerging economies
- Space cooling is set to overtake appliances and plug loads to become the single largest user of electricity in buildings (2015: 10%; 2050: 30%)

Status of Solar Cooling (2015)

Source: SOLEM Consulting

3

www.iea-shc.org

no claim on completeness

SOLARCOOLING[®]

No. of Solar Cooling installations

Source: SOLEM Consulting / TECSOL

Still a niche market :

≈ 1,800 systems installed worldwide (2020)

Sunbelt regions

www.iea-shc.org

Task 65 Objective & Scope

Objective

- Focus on innovations for affordable, safe and reliable solar cooling systems for the sunbelt regions worldwide
- Implementation/adaptation of components and systems for the different boundary conditions is forced by cooperation with industry and with support of target countries like UAE through Mission Innovation IC7
- The innovation driver and the keyword is adaptation of existing concepts/technologies to the sunbelt regions using solar energy either solar thermal (ST) or solar PV

Scope

- Build on previous tasks 25, 38, 48 and 53
- Target size segment on cooling and air conditioning between
 2 kW and 5,000 kW (PV and ST)
- Task duration: July 2020 June 2024

Task 65 Subtasks and Leaders

Operating Agent

lead country: Germany OA: Prof Dr. Uli Jakob, JER/Green Chiller

Subtask A: Adaptation

lead country: Italy subtask leader: Dr. Salvatore Vasta, CNR-ITAE

Subtask B: Demonstration

lead country: USA
subtask leader: Wolfgang Weiss, ergSol Inc. (Limited Sponsor)

Subtask C: Assessment and Tools

lead country: Austria subtask leader: Dr. Daniel Neyer, Neyer Brainworks

Subtask D: Dissemination

lead country: Germany subtask leader: Prof. Dr. Paul Kohlenbach, Beuth University of Applied Sciences Berlin

Hybrid heat pumps / DEC /

Compresion /

Subtask structure

- A1: Climatic conditions & applications
- A2: Adapted components
- A3: Adapted systems
- A4: Building and process optimization potential
- A5: Standardization activities

Subtask B: DEMONSTRATION

B1: Show cases on system and component level B2: Design guidelines B3: KPI definitions B4: Standardization / solar cooling kits B5: Lessons learned (technical and non-technical)

Subtask C: ASSESSMENT & TOOLS

C1: Design tools and models C2: Database for technical and economic assessment C3: Assessment tools

Subtask D: DISSEMINATION

D1: Homepage / publications D2: Policy advice & financing models D4: Book or booklet D5: Workshops

Climate zones of sunbelt Torpica

- Arid

- lechnologies
- Heat rejection

Storage

Concepts (ice, water, PCM...

- Water saving / treatment
- Innovations

SUNBELT REGIONS

TASK65

Subtask A: ADAPTATION

General objectives

- Collection of technical / climatic boundary conditions for sunbelt
- Adaptation and documentation of specific key components (Sources, heat rejection, heat pumps/chillers, storage concepts, complete systems)
- Identify the technical and economic potential of building and process optimization
- Identify ongoing and future standards and testing methods and initiate updates

Subtask B: DEMONSTRATION

General Objectives

- Show cases on system and component level through existing projects & new MI IC#7 activities
- Maximize solar fraction of solar cooling under certain local technical & economic boundaries
- Force the work of standardization and solar cooling kits in all capacity ranges and different technologies
- Documentation of the **lessons learned** (technical & non-technical) and preparation for dissemination activities

Subtask C: ASSESSMENT and TOOLS

General Objectives

- Update / merging of **useful tools** for design & assessment
- Establishing / adapting of assessment method and benchmarking (incl. reference system in different locations)
- Create common data base for technical, environmental, economic (and social) assessment for the participating countries
- Analyses of **Subtask B results and benchmarking** against reference systems and different renewable and solar solutions
- Sensitivity analyses of high influencing parameters on the technical / economic / environmental assessment

Subtask D: DISSEMINATION

General Objectives

- Communication of best practice demo cases, successful installations and business models
- Accelerate know how transfer from scientists to industry & knowhow carrier to sunbelt regions
- Establish a network of scientists/consultants/companies to accelerate the **establishment of projects** in sunbelt regions
- Synchronize national/international research & funding programs
- Financing & business models for Solar Cooling
- Mapping of necessary R&D as base for a roadmap of solar cooling in sunbelt regions

www.iea-shc.org

12

Task 65 website

SHC TASK 65

ABOUT PROJECT MEETINGS / EVENTS NEWS PUBLICATIONS RESOURCES

Focuses on innovations for affordable, safe and reliable Solar Cooling systems.

LEARN MORE

Task Information
DURATION
July 2020 — June 2024
OPERATING AGENT

Prof. Dr. Uli Jakob

GERMANY

ulijakob@drjakobenergyresearch.de

Kick Off Meeting Day 1

• About 45-50 participants during the first day

Collaboration with other SHC Tasks, IEA TCPs, organizations/institutions

- IEA SHC Task 64 on Solar Process Heat
- IEA HPT Annex 53 on Advanced Cooling/Refrigeration Technologies Development
- IEA EBC Annex 80 on Resilient Cooling of Buildings
- Mission Innovation IC7

Mission Innovation @ kick off

Graeme Maidment – BEIS, UK (co-lead IC#7)

- Cooling demand is expected to grow 50x by 2100 adding 100 GtCO_{2e} to 2050
- How IC7 can support Task 65 ?
 - \rightarrow Publicity, profile and links to other projects
 - \rightarrow Potential for IC7 to facilitate country funding

Sabine Mitter – BMK, Austria

- Austria participates in 21 technology collaboration programmes (TCPs) of the International Energy Agency (IEA)
- Member of the Mission Innovation
- Contribution to international standardisation
- Austria in SHC (e.g. Task 55, 59 and 64)
- New international markets for Austrian solar energy companies (Task 65)

www.iea-shc.org

Double effect concepts

Example. "SolarCooling 2.0"

Source:

17

- Fresnel collector, only direct radiation, 170°C outlet
- 2-stage AbKM, $COP_{th} = 1.2-1.4$, steam
- For the same cooling capacity compared to single-stage
 - approx. 50% of the generator power
 - approx. 70% of the heat rejection required.
 - here approx. 40% reduction of the investment costs

III SOLARCOOLING SUNBELT

Hybrid e.g. HyCool

- $T_{LT} = 5^{\circ}C.$, Development target -10°C
- Integrated vapour compression modul (R290)
 - Redundancy and high energy efficiency
 - Peak and interim loads
- Sorption modul for cooling the condensator
 - Tcond VCC ~ 20°C \rightarrow EER_{HHP} increases up to 7-8
 - E.g. Barcelona 4,748h → 0.031 €/kWh_{cold}

Source: www.ecotherm.com www.hycool-project.eu www.fahrenheit.cool

18

Hybrid concepts

• SolarHybrid by

- Prototypes in Hardware-in-the-Loop (HiL) & simulation study
 - 20 kW NH₃/H₂0 absorber (ACM)
 - 20 kW NH₃ vapor compression (VCC)
- Solar direct driven absorber
 + complementing compressor
 - No hot water storage
 - SPFel >15
 - Primary Energy Savings up to 80 %
 - CR < 1 possible

Hybrid concept in China sol.e.h.²

Arbeitsbereich für Energieeffizientes Bauen

www.iea-shc.org

Building optimization

• Application in hostel & office

www.iea-shc.org

Source: PHI

How to participate

National Participation Letters (NPL)

→ received from Austria, China, Denmark, France, Italy, Mozambique, The Netherlands, Spain, Sweden, Switzerland, Uganda, UK, USA, Zimbabwe

→ in progress by, Australia, Botswana, Egypt, Germany, India, Slovakia, South Africa

Please contact your national ExCo representative

(https://www.iea-shc.org/executive-committee)

or contact SHC secretary for **Limited sponsorship**

He Tao | Vice Chair Deputy Director Center for Quality Supervision and Testing of Solar Heating Systems China Academy of Building Research (CABR) 30#, Beisanhuandonglu, Chaoyang District Beijing 100013, hina iac@vip.sina.com; www.cabr.com.cn

SCAR HEINIKE & COLUNIC ROGRAMME INTERNATIONAL ENERGY AGENCY				
LETTER OF PARTICIPATION				
 Date: 18 June 2020 To: Operating Agent: Prof. Dr. Uli Jakob, Green Chiller Association for Sorption Cooling e.V., Stendaler Str. 4, 10559 Berlin, Germany 				
Participation Commitment Letter				
for Task 65: Solar Cooling for the Sunbelt Regions				
Task Start Date: 1 July 2020 Completion Date: 30 June 2024				
This letter confirms and acknowledges the commitment of the undersigned Contracting Party or Sponsor, which is a Participant in the abovementioned Task, to:				
(1) fulfil the minimum participation requirements specified in Annex 65, which is 1.2 person months per annum.				
(2) to abide by the Task Research Work Plan prepared by the Participants and approved by the Executive Committee, and				
(3) to ensure that their national representatives are funded to attend all Task meetings.				
Nominated expert(s) for this Task are:**				
Name	Address/ Area of Expertise	Level of Effort: x person month per year	Funding Source (contingent on funding from the specified source)	Dates Funding is Guaranteed
Other contributions to the Task (facilities, equipment, project, etc.).**				
Contracting Party, Country or Sponsor, Organization:**				
Signature of ExCo Member: ** Date:**				
Signature of Operating Agent (after the ExCo returns signed letter):				
** To be filled in by ExCo member and returned within 2 months of receiving from OA				
A copy of the signed letter should be sent to the SHC Secretariat.				

Drivers to push forward Solar Cooling

Future growth of Solar Cooling markets could be stimulated by the following technical and economic aspects ... :

- Focus on innovations for affordable, safe and reliable Solar Cooling systems
- Focus on energy conservation and use of renewables
- Shortfalls in electricity supply and rising electricity costs
- European F-gas regulation (natural refrigerants)
- Standards for sorption chillers (e.g. DIN V 18599-7, VDMA 24247-9)

... but much more on trust and political issues:

- Best practice online database to build trust in the technology
- Policy advice to provide relevant information for energy policy decision-makers including the current state of the art
- Roadmaps including policy measures to promote Solar Cooling

www.iea-shc.org

Contact: Dr. Daniel Neyer, Subtask C leader Prof. Dr. Uli Jakob, OA IEA-SHC Task 65

Neyer Brainworks GmbH, Austria / daniel@neyer-brainworks.at

Dr. Jakob energy research GmbH & Co. KG, Germany / uli.jakob@drjakobenergyresarch.de